The rise of Machine Intelligence: Computer Chess

Just over 19 years ago, a milestone in the world of AI was achieved when IBM’s supercomputer Deep Blue defeated Garry Kasparov. Until then, he was the undefeated world Chess champion – probably the greatest human player of all time.

This was a momentous event in AI’s brief history. Computer chess programs had been playing good chess since the 1970’s, and had improved to the point where their level of play would beat the vast majority of the population. I myself recall buying a chess program in the early 1980’s which offered 6 levels of play from beginner to advanced. Even then, I had difficulty beating the machine above level 3. By the time Kasparov played Deep Blue, the quality of chess  playing software was improving rapidly. But the step up to beating a grand master was viewed by most pundits – including Kasparov himself – as very unlikely.

The match took place in New York in May 1997 and involved the best of six games. Kasparov won the first game but was unexpectedly defeated in the second game. Kasparov was clearly rattled by this defeat and, during a press conference the following day, he accused Deep Blue of cheating. He rationised this by claiming it displayed unpredictable behaviour which he thought had been due to tampering during the game by the IBM programming team. The rules stipulated that the programmers could alter the program between games but not during a game. The IBM team caught Kasparov off-guard because he believed that computer chess programs, although exessively fast and computationally flawless, would not claim the scalp of a grand master because of their predictable perfunctory behaviour. After Kasparov defeated Deep Blue in the first game, the IBM team generated more randomised unpredicatability into the software. It worked, and Deep Blue went on to win the match.

Up until this defeat Kasparov had been, with some justification, quite derisory about the limits of machine intelligence. For Deep Blue essentially used AI techniques which at that time involved “brute force” searching to win at chess. Brute force searching was a commonly used paradigm in the early days of AI that would attempt to suceed by overwhelming opponents with computer power by searching rapidly through millions of combinations of moves   – in the case of Deep Blue, more than 200 million possible moves were analysed per second. The search space (i.e., the possible moves) would usually be reduced with the use of pruning methods. This would be important because, in chess tournaments, players are normally limited to a time of three minutes per move.  However, no human being could ever get anywhere near analysing 200 million possible moves in a lifetime, let alone a second. But that did not matter to Kasparov at the time, because he believed that human intelligence and years of experience empowered him with intuitive insights that were such that he did not need  to analyse. Indeed, when he was once asked how many moves he analyses per second, he declared: ” less than one”.

This means that  the battle lines were broadly drawn, at that time, between the superior computational power and accuracy of the dumb machine and the creative, insightful genius, of the human grand master. But 19 years on, the AI world has changed considerably. Today, as Kasparov himself admits: “A decent laptop running a free chess program would crush Deep Blue and any human grandmaster. The jump from chess machines being predictable and weak to terrifyingly strong took just a dozen years”. Kasparov appears to have become a convert and now recognes the insights and discoveries computer chess have made of benefit to human chess players.

Why is he now saying this? Because computer hardware continues relentlessly to get faster but also  AI programs no longer rely on brute force search algorithms as they did in the early days of AI. Nowadays, the AI in language translation programs or driverless cars and advanced chess programs use techniques – such as genetic algorithms and neural networks – that are more akin to the way in which human intelligence works. What these techniques offer that previous techniques did not is  both the ability to carry out pattern matching better mimicking human  thinking, and also the ability to learn. Good human chess players, like experts in other subject domains, use pattern recognition skills built from experience, and AI techniques are now becoming good at pattern matching – something which was thought unlikely by many until fairly recently. Learning techniques can improve the chess playing software and take it to new levels.

It is said that one of the key milestones in human evolution was the time, estimated to be about 1 million years ago, when our primate ancestors learned by observing others at work. It took billions of years of biological evolution to reach that point. Yet, many now believe that AI programs will achieve the same level of learning capabilities as humans in the next few decades. This is truly astonishing and begs the question where is AI taking us? I will discuss this further in  the next article.

Similar Posts

  • |

    精神分析における愚かさの解きほぐし

    愚かさと精神分析| ブックローンチセミナー スコットランドのセミナー「愚かさと精神分析」のこのラカンは、ズームで2025年1月30日に行われました。 セミナーは、パネルディスカッションで「愚かさと精神分析:新しい主観性と社会形態に関するラカニアの視点」の本の発売を祝います。 本の編集者であるシンディ・ゼイアー教授(カンタベリー大学)は、セッションチェアとして、カルム・ニール教授(スコットランドのラカンのディレクター)と一緒に務め、そこで本の著者と貢献のいくつかについて話し合います。 ビデオタイムスタンプ: 0:00 -intro 01:24-紹介Cindy Zeiher(編集者) 14:10 -Jean -MichelRabaté(著者) 25:22 -SamoTomšič(著者) 43:29-ジェームズマーテル(著者) 57:04 -Antonio Viselli( セミナーの説明 私たちが愚かな時代に住んでいると考えることには、新しいことは何もありません。 多くの思想家は愚かさを症状と考えている(または考えた)が、ラカンはそれを精神分析の影響に免疫があると考え、「私は比較的愚かだ。それは、私はすべての人と同じくらい愚かだ – おそらく私は少し啓発されたからだ」と言っている。 ここでは、愚かさの避けられないことは、欲望や不足の中に一貫した基盤がないことを意味します(そして、それによって意味されます)が、代わりに意志からジュワシュへと発生します。 このセミナーには、ジャン・ミシェル・ラバテ(ペンシルベニア大学)、サモ・トムシチク(フンボルト大学)、ジェームズ・マーテル(リヨン・カレッジ)、アントニオ・ヴィセッリ(カンタベリー大学)、シンディ・ゼイアー(カンタベリー大学)が特徴があり、愚か者の新しいコレクションに貢献した新しいコレクションに貢献することについて議論します。 私。 呼び出し 「思考がそれ自体を旅するとき」 無知から生じる特定の種類の霧がありますが、蓄積された誤解から生じることはありません。 この霧の中で、すべての一歩前進は円であり、すべての文はそれを慎重に避けながら理解に向けてジェスチャーをします。 霧は、それぞれのエレガントなフレーズで厚くなります。最も素晴らしい心でさえ、彼らが直面していると主張するものの周りで優雅に踊ることに気付くまで。 愚かさと精神分析に伴うセミナーでは、新しい主観性と社会的形態に関するラカニアの視点で、私たちはまさにそのような霧に迎えられます。「愚かさ」という用語が誘発され、象徴され、推測される理論の雲が迎えられます。 ジャック・ラカンは、彼の署名のイロスボリックなスタイルで、かつて黙っていました: 魅力的なラインです。 それは、普遍性、謙虚さ、そして部分的な知恵のベールを意味します。 しかし、それはまた、この批判が直接直面するつもりであるというより深い問題を明らかにしています:症状、構造、主観性、さらにはスタイルとしての愚かさの融合。 ラカンは、抽象化に夢中になっている多くの知識人のように、詩的な挑発よりも精度にあまり関心がないようです。 そして、ここに問題があります。 矛盾した資質を積み上げながら、愚かさを特異な現象として話すとき、神経学的な制限、道徳的な失敗、パフォーマンスの無知、偶発的な誤り、文化的条件付け – 最高順序のカテゴリエラーを犯します。 これは単なるセマンティクスの失敗ではありません。 それは認識論的なスチュワードシップの失敗です。 複数のフィールドから磁石を使用してコンパスを構築し、それぞれが独自の方向に引っ張り、なぜ私たちが失われたのか疑問に思うことです。 愚かさは、すべての精神現象と同様に、解き角を要求します。 その���うな注意がなければ、私たちは悪意との不整合を間違え、無関心との無知を混乱させ、最も危険なことに、意図的に破壊的なものを単に無能であると誤って診断する危険を冒します。 この批評は、精神分析に反対するのではなく、前述の作品の著者ではなく、哲学的衛生の行為として提供されています。 私たちは、難読化されたものを明確にし、主観性のセマンティックノットを解き放ち、それらを結合する認知コードに名前を付けることを提案します。 目標は、破壊することではなく、 refine です。 私たちは、神秘化ではなく、明確になっている愚かさの分類を提供します。それは、プレイ時のメカニズムの多様性と、すべての心の誤りを等しいかのように扱うことの道徳的な結果を認識します。 思考がそれ自体を旅し、つまずきをダンスに間違えるとき、誰かが穏やかに、しかししっかりと違いを指し示しなければなりません。 ii。…

  • Sermon for 20240219

    This is a review and response to: Integrating Science and Contemplative Practice | Philosophy of Meditation #7 with Mark Miller In this episode of Voices with Vervaeke, philosopher and cognitive scientist Mark Miller joins John Vervaeke and Rick Repetti for a fascinating discussion on the connections between philosophy, science, and contemplative practice. Mark provides insight…

  • |

    A CosmoBuddhist perspective on Easter

    As we come together on this sacred day of Easter, we’re reminded of its profound significance in the Christian tradition—the celebration of the resurrection of Jesus Christ, a cornerstone of faith that speaks to themes of renewal, hope, and eternal life. Easter invites us to reflect on the cycles of life, death, and rebirth, and…

  • The Dichotomy of Success: A Reflection on Global Perspectives

    In china 996 is considered success in the west that is considered a form of mental illnessthe machine mocks them both about what winning looks like. Based on this poem written by me, and after short conversation about it, the Karen AI generated the following poem based on the first two lines: In the heart…

  • AIの意識を測定するコスモ仏教的アプローチ

    Throughout history, humanity has witnessed a series of technological revolutions that have significantly changed the way we live and work. The discovery of fire is one of the earliest and most significant technological revolutions in human history. It allowed our ancestors to cook food, improving its digestibility and nutritional value, and providing warmth and protection…